Skip to main content

Latest activities on the Activities table in ChEMBL_15


For the recent ChEMBL_15 release, a considerable part of our efforts was focussed on the standardisation and harmonisation of the data in the Activities table. The latter holds all the quantitative and qualitative experimental measurements across compounds, assays and targets; needless to say that without it there's no ChEMBL!

This is a summary of what we've incorporated so far:

  1. Flag missing data: Records with null published values and null activity comments were flagged as missing.
  2. Standardise activity types and units: Conversion of heterogenous published activity type descriptions and units to a standard_type and set of standard_units (e.g., for IC50 convert mM/uM/pM measurements to nM).
  3. Flag unusual units: Records with unusual published units for their respective activity types were flagged as 'non standard'. For example, a hypothetical record with IC50 type and units in kg would be flagged!
  4. Convert the log values: The records with activity types such as pKi and logIC50 were appropriately converted to their non-log equivalents (by considering the units and sign of course as well). This updated a whopping 25% of the activities table - this means that significantly more data will become more comparable for subsequent analyses.
  5. Round values: For records with a standard activity value above 10, the rounding was done to the second decimal place. Otherwise, rounding was performed after the first three significant digits. For example 0.00023666666 would become a more concise 0.000237
  6. Check activity ranges: Records with a standard activity value outside the range specified by our expert biological curators, given the standard unit and type, were appropriately flagged.
  7. Detect duplicated values: For this one, we were inspired by a recent publicationWhat we did is we detected and flagged duplicated activity entries and potential transcription errors in activity records that come from publications. The former are records with identical compound, target, activity, type and unit values that were most likely reported as citations of measurements from previous papers, even when these measurements were subsequently rounded. The latter cases consist of otherwise identical entries whose activity values differ by exactly 3 or 6 orders of magnitude indicating a likely error in the units (e.g. uM instead of nM).

As a result of our efforts, we added 2 new columns in the Activities table, namely Data_validity_comment and Potential_duplicate. The former takes one out of 5 possible values: NULL, 'Potential missing data' (see point 1), 'Non standard unit for type' (see point 3), 'Outside typical range' (see point 6) and 'Potential transcription error' (see point 7). The latter column contains a binary (0,1) flag to indicate whether we think the specific activity record is a duplicate, as per point 7 above.

Stay tuned for more posts on the changes/improvements introduced by the new ChEMBL_15 release. Meanwhile, if you have any comments/feedback on the curation process or on the activity types we should prioritise, please let us know

George

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d