Skip to main content

New Drug Approvals 2011 - Pt. XXII Indacaterol Maleate (ArcaptaTM)











ATC Code: R03AC18

On July 1, the FDA approved indacaterol maleate (NDA 022383) for the long-term treatment of patients with chronic obstructive pulmonary disease (COPD) a chronic and serious disease involving restriction of full lung function. The narrowing of airways of COPD is irreversible, and follows inflammation in the lung, believed to be linked to environmental pollutants such as tobacco smoke, workplace dusts and urban air pollution. Indacaterol maleate is administered as an aerosol through a dry powder inhaler and carries a boxed warning for asthma-related death and is not indicated for the treatment of asthma.

The active ingredient of indacaterol maleate is indacaterol (ChEMBL: 1095777) an agonist of the beta-2 adrenergic receptor (Uniprot: P07550, ChEMBL: 210) with measured EC50 of 11nM. Indacaterol exerts its effect through activation of the beta-2 adrenergic receptor, leading to smooth muscle relaxation and a widening of bronchioli in the lungs. Activation of the beta-2 adrenergic receptor stimulates the intracellular adenyl cyclase and increases cAMP levels, which in turn leads to a reduction of the level of calcium ions inside smooth muscle cells. Other long acting beta-adrenoceptor agonists (LABA) such as salmeterol, formoterol and bambuterol entered the market during the 1980s. The duration of action of these earlier compounds is 12 hours, while for indacaterol it is 24 hours.

Multiple crystal structures of the beta-2 adrenergic receptor now exist (PDBe: 2R4R, 2R4S, 2RH1, 3D4S, 3KJ6, 3NY8, 3NY9, 3NYA, 3P0G, 3PDS), a nano-body stabilized structure of the receptor in its activated form is shown below (PDBe: 3p0g).

Indacaterol (IUPAC: (R)-5-(2-((5,6-diethyl-2,3-dihydro-1H-inden-2-yl)amino)-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one, SMILES: CCc1cc2CC(Cc2cc1CC)NC[C@H](O)c3ccc(O)c4NC(=O)C=Cc34 , InChI: 1S/C24H28N2O3/c1-3-14-9-16-11-18(12-17(16)10-15(14)4-2)25-13-22(28)19-5-7-21(27)24-20(19)6-8-23(29)26-24/h5-10,18,22,25,27-28H,3-4,11-13H2,1-2H3,(H,26,29)/t22-/m0/s1, ChemSpider: 5293751, ChEMBL: 1095777) is a is a synthetic small molecule drug with one chiral center. It has a molecular weight of 392.5 Da and calculated LogP of 3.93. Indacaterol has 4 hydrogen bond acceptors and 4 hydrogen bond donors and therefore fully complies with Lipinski's rule of five. The picture below shows both the active ingredient, indacaterol, and maleate.

The USAN stem name -terol indicates that indacaterol is a phenethylamine derivative bronchodilator. Other -terols include salmeterol, formoterol, bambuterol, vilanterol, milveterol and levalbuterol.


Indacaterol's bioavailability after inhalation is (at the recommended dose range of 75-150 µg) is 43-45% and the volume of distribution (Vd) is between 2.36 and 2.56 L.kg-1 and a clearance (CL) of about 20L.hr-1. Steady-state of Indacaterol levels is reached within 12 to 15 days. Plasma protein binding (ppb) of the dosed drug is 95.1-96.2%. Excretion of indacaterol is mainly through the fecal route, either as the parent compound (54% of the dose) or hydroxylated metabolite (23% of the dose).

Indacaterol maleate is administered once daily as an aerosol containing  75-150 µg of active ingredient from a powder inhaler.

The full prescribing information can be found here.

Indacaterol maleate was approved by the European commission in 2009 and is marketed in Europe as Onbrez. In the US, indacaterol maleate will be marketed by Novartis under the trade name Arcapta. 

Comments

Popular posts from this blog

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra

ChEMBL 26 Released

We are pleased to announce the release of ChEMBL_26 This version of the database, prepared on 10/01/2020 contains: 2,425,876 compound records 1,950,765 compounds (of which 1,940,733 have mol files) 15,996,368 activities 1,221,311 assays 13,377 targets 76,076 documents You can query the ChEMBL 26 data online via the ChEMBL Interface and you can also download the data from the ChEMBL FTP site . Please see ChEMBL_26 release notes for full details of all changes in this release. Changes since the last release: * Deposited Data Sets: CO-ADD antimicrobial screening data: Two new data sets have been included from the Community for Open Access Drug Discovery (CO-ADD). These data sets are screening of the NIH NCI Natural Product Set III in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296183, DOI = 10.6019/CHEMBL4296183) and screening of the NIH NCI Diversity Set V in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296182, DOI = 10.601